

Mark Scheme (Results)

Summer 2022

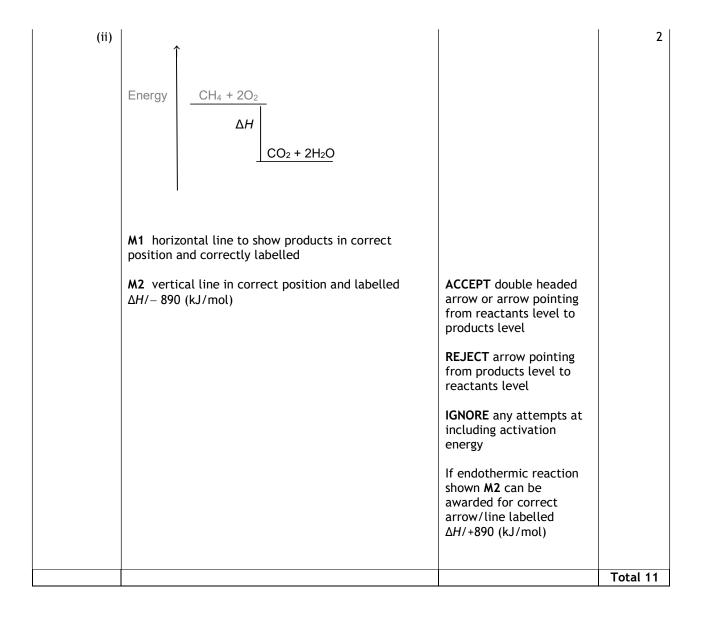
Pearson Edexcel International GCSE In Chemistry (4CH1) Paper 2C

Question number	Answer	Notes	Marks
1 (a) (i)	argon	ALLOW Ar	1
(ii)	nitrogen	ALLOW N ₂ /N	1
(iii)	hydrogen	ALLOW H ₂ /H	1
(b)	climate change/global warming /oceans becoming more acidic	ALLOW greenhouse effect ALLOW effects of global warming e.g. melting of polar ice caps/flooding/wild fires IGNORE acid rain REJECT references to ozone layer	1
(c)	M1 bubble/pass/add the gas/carbon dioxide into limewater M2 (limewater) turns cloudy/milky	ALLOW white precipitate M2 dep on mention of limewater REJECT addition of extra reagents for both marks	2
			Total 6

Questi numb		Answer	Notes	Marks
2 (a)	(i)	M1 (X) measuring cylinder		2
		M2 (Y) pipette	ALLOW graduated pipette	
	(ii)	(volume measurement with Y is) more precise ORA	ALLOW (volume measurement with Y is) more accurate ORA	1
			ALLOW (Y gives) a (more) exact volume /exactly 25 cm ³	
(b)	(i)	yellow		1
	(ii)	there is no clear end point/ colour change is gradual (at the end point)/no sharp colour change OWTTE	ALLOW it has a range of colours	1
(c)			correct answer with or without working scores 3	3
		M1 moles of HNO ₃ = $\frac{21.5 \times 0.6(00)}{1000}$ OR 0.0129		
		M2 moles of Ba(OH) ₂ = $0.0129 \div 2$ OR 0.00645	ALLOW ecf on M2	
		M3 conc. of Ba(OH) ₂ = $0.00645 \times 1000 = 0.258 \text{ (mol/dm}^3)$ 25	ACCEPT alternative methods	
			0.516 scores 2	
			1.032 scores 2	
			ALLOW 2 sig figs correctly rounded throughout	
			Penalise rounding to 1 sig fig once only	
(d)		barium sulfate is insoluble /does not dissolve /forms a precipitate		1
				Total 9

Question number	Answer	Notes	Marks
3 (a)	C fluorine A is incorrect as astatine is black B is incorrect as bromine is brown D is incorrect as iodine is dark grey		1
(b)	A astatine B is incorrect as bromine is a liquid C is incorrect as chlorine is a gas D is incorrect as fluorine is a gas		1
(c)	An explanation that links the following four points M1 fluorine is more reactive than chlorine ORA M2 the outer shell is closer to the nucleus in fluorine / fluorine has fewer shells / fluorine has a smaller atomic radius ORA M3 there is a stronger attraction to the nucleus for an electron in fluorine ORA M4 so fluorine accepts an electron more readily ORA	ALLOW reactivity decreases down the group ORA ALLOW a fluorine atom is smaller than a chlorine atom ORA ALLOW there is less shielding in fluorine ORA	4
(d) (i)	2Li + Cl₂ → 2LiCl	ALLOW multiples or fractions IGNORE state symbols even if incorrect ACCEPT 2Li*Cl* REJECT any charges on Li or Cl ₂	1

(ii)	A description that refers to the following five points		5
	Test for lithium ions	ACCEPT description of	
	M1 flame test	ACCEPT description of flame test	
	M2 red (flame)	ALLOW crimson/scarlet	
		REJECT brick red/orange red	
		M2 dep on M1	
	Test for chloride ions		
	M3 add nitric acid	REJECT incorrect acid e.g. HCl or H ₂ SO ₄ for M3 only	
	M4 add silver nitrate (solution)	ALLOW acidified silver nitrate for M3 and M4	
	M5 white precipitate	M5 dep on addition of silver nitrate	
			Total 12


Question number	Answer	Notes	Marks
4 (a)	M1 bright/white light OR bright/white flame		2
	M2 white powder/solid/ash	ALLOW white smoke	
		ALLOW grey powder /solid/ash	
(b)	A description that refers to the following two points	REJECT white precipitate	2
	M1 magnesium/Mg loses two electrons/becomes 2.8		
	M2 oxygen/O gains two electrons/becomes 2.8	ACCEPT magnesium gives two electrons to oxygen for M1 and M2	
		Both marks can be scored from diagrams showing correct electronic configurations of the ions.	
(c) (i)	magnesium is more reactive/higher in the reactivity series (than carbon)/magnesium is a better reducing agent (than carbon) ORA	ALLOW carbon cannot displace magnesium	1
(ii)	An explanation that links the following four points		4
	M1 (magnesium) has delocalised electrons		
	M2 electrons can move	REJECT reference to ions or atoms moving for M2	
	M3 (magnesium chloride) can only conduct when molten/in solution OR (magnesium chloride) cannot conduct when solid	ions are free to move when (magnesium chloride) is molten/in	
	M4 ions are free to move	solution scores M3 and M4	
		REJECT reference to electrons moving for M4	
(d) (i)	magnesium ions/ Mg ²⁺ gains electrons	ALLOW electrons are gained	1
		REJECT magnesium /Mg gains electrons	
		REJECT reference to loss or gain of oxygen	
(ii)	$2Cl^- \rightarrow Cl_2 + 2e^{(-)}$	ALLOW $2Cl^ 2e^{(-)} \rightarrow Cl_2$	1
		ALLOW multiples or fractions	
		IGNORE state symbols even if incorrect	
			Total 11

Question number	Answer	Notes	Marks
5 (a) (i)	M1 <u>40.0</u> <u>6.7</u> <u>53.3</u> <u>16</u>	0 marks for division by atomic numbers or upside-down calculation	2
	M2 3.33 6.7 3.33 AND	ALLOW any number of sig figs except 1	
	1 2 1	ACCEPT alternative methods	
(ii)	CH₃COOH	ACCEPT HCOOCH ₃	1
	OR	OR	
	H-Ċ-Ć H Ć	0=0	
(b) (i)	$2HCOOH + Na_2CO_3 \rightarrow 2HCOONa + CO_2 + H_2O$		2
	M1 CO ₂ + H ₂ O	IGNORE numbers in front of CO ₂ and/or H ₂ O if only M1 scored	
	M2 HCOONa and equation correctly balanced	REJECT NaCOOH	
		ALLOW NaHCOO	
(ii)	bubbles/ fizzing/ effervescence	IGNORE gas given off	1
		ALLOW sodium carbonate disappears/dissolves	
(c) (i)	propyl methanoate	spelling must be correct	1
		ALLOW propyl formate	
(ii)	reversible reaction	ALLOW reaction which goes both ways	1
		IGNORE equilibrium	

(iii)	forward and backward read rate OWTTE	ctions occur at the same		1
	OR			
	concentrations of reactants constant/stay the same/do		ALLOW amounts/moles/ratios of reactants and products remain constant	
			REJECT concentrations of reactants and products are equal/the same	
(d) (i)	condensation (polymerisat	ion)		1
(ii)				2
	M1	M2	ALLOW HOOCCH ₂ CH ₂ COOH for M1	
	O O	HO—CH ₂ CH ₂ —OH	ALLOW HOCH ₂ CH ₂ OH for M2	
			REJECT OH—C once only	
				Total 12

Question number	Answer	Notes	Marks
6 (a)		correct answer with or without working scores 4	4
	M1 (moles of TiO ₂ =) $\frac{20 \times 10^6}{80}$ OR 2.5 × 10 ⁵ (mol)	ACCEPT 250 000 (mol)	
	M2 (moles of $Cl_2 = 2.5 \times 10^5 \times 2$ OR 5.0×10^5 (mol)	ACCEPT 500 000 (mol)	
	M3 (vol of $Cl_2 = 0.0 \times 10^5 \times 24$ OR 12 000 000 (dm ³)		
	M4 1.2 × 10^7 (dm ³)	ALLOW ecf on M2 and M3	
		6 x 10 ⁶ scores 3	
		3 x 10 ⁶ scores 3	
		6 000 000 scores 2	
		3 000 000 scores 2	
		2.083 x 10 ⁴ scores 3	
(b)	An explanation that links the following two points		2
	M1 argon is unreactive/inert		
	M2 (so argon) will not react with/oxidise the magnesium	ALLOW argon will not react with/oxidise titanium	
	OR oxygen (in air) will react with/oxidise the magnesium	OR oxygen (in air) will react with/oxidise the titanium	
(c)	An explanation that links the following three points	all marks can be awarded from labelled diagrams	3
	M1 in pure titanium all atoms are the same size OR layers/atoms can slide over each other (making it soft /malleable)	ALLOW cations/ions /particles in place of atoms throughout	
	M2 the alloy has atoms of different sizes	REJECT mention of molecules once only	
	M3 (which disrupts the structure so that) atoms/layers do not/harder to slide over each other (making it stronger) OWTTE	motecutes office offity	
			Total 9

Question number	Answer	Notes	Marks
(a)	carbon	ALLOW soot	1
		ALLOW copper(II) oxide /copper oxide/CuO	
		REJECT copper(I) oxide	
(b)	M1 (amount of ethanol) = 0.92 ÷ 46 OR 0.02(0) (mol)		2
	M2 (-)18.2 ÷ 0.02(0) = (-)910 (kJ/mol)	ALLOW alternative methods	
(c)	Any 2 from		2
	M1 heat (energy)/ thermal energy was lost (to the surroundings/apparatus)		
	M2 incomplete combustion (of ethanol)		
	M3 the ethanol was impure/ethanol evaporates		
(d) (i)		correct answer with or without working scores 4	4
	M1 Σ bonds broken = 4 x C-H + 2 x 498	ALLOW 2 x 498 OR 996 seen	
	M2 Σ bonds formed = 2 x 805 + 4 x 463 OR 3462		
	M3 4 x C–H + 996 – 3462 = – 890		
	M4 C-H = 1576 ÷ 4 = 394 (kJ/mol)	ALLOW ecf throughout	
		839 without working scores 3	
		616.5/617 without working scores 3	

